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PREFACE

This report describes the efforts undertaken as part of the project T/B1347 "Computational
Prediction of the Optimum Shape for Aerodynamic Decelerators”, using Project
1L162786D283AJHOO funds; T/B1427 "Nonlinear Structural Dynamic Behavior of Parachutes"”,
using Project 1L162786D283AFA00 funds; "Computational Fluid Dynamics for Parachute
Opening", using Project 1L161102AH5202BOO funds. This effort was undertaken during the
period October 1991 through December 1993. This work was performed by the Engineering
Technology Division (ETD) of the Aero-Mechanical Engineering Directorate (AMED).
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A COMPUTATIONAL MODEL THAT COUPLES
AERODYNAMIC AND STRUCTURAL DYNAMIC BEHAVIOR
OF PARACHUTES DURING THE OPENING PROCESS

SUMMARY

In parachute research, the canopy inflation process is the least understood and most
complex to model. Unfortunately it is during the opening process that the canopy often
experiences the largest deformations and loadings. The complexity of modeling the opening
process stems from the coupling between the structural dynamics of the canopy, lines plus
payload and the aerodynamics of the surrounding fluid medium. The addition of a computational
capability to model the coupled opening behavior would greatly assist in understanding the
canopy inflation process. Ongoing research at the U.S. Army Natick Research, Development and
Engineering Center (Natick) focuses on this coupled problem. The solution to this problem will
assist in the development of future U.S. Army airdrop systems, which include the capability of
deploying at low altitudes and high speeds.

This paper describes research at Natick that currently involves coupling a computational
fluid dynamics (CFD) code to a mass spring damper (MSD) parachute structural code. The
model is described and results are presented. Initial computational results compare favorably
with experimental data for a quarter-scale C-9. Future enhancements to the coupled model are
discussed.

INTRODUCTION

The time-variant aerodynamic characteristics associated with the opening of a parachute
are extremely complex to model. The complexity of the problem arises largely from the fact that
the flow field is dependent on the canopy shape, which is itself dependent on the flow field. A
correct model must include the coupled behavior of the structural dynamics of the parachute
system with the aerodynamics of the surrounding flow field. A coupled model will provide not
only information about the opening characteristics of a parachute but also characteristics of the
parachute in its terminal velocity state including the parachute’s shape, drag, velocity, pressure
distribution, and flow-field characteristics.

Previously, either the aerodynamic or the structural dynamic behavior of the parachute
opening problem was studied independently (decoupled). A variety of decoupled models
developed and investigated at Natick have contributed directly to the coupled model presented
in this paper. These studies include steady and unsteady CFD solutions about rigid decelerators




[1,2,3]. Unsteady CFD solutions about decelerators with a specified opening behavior have been
investigated [4]. A dynamic spherical membrane model was developed at Natick [5]. This
spherical membrane model was used in an early attempt to couple the structural dynamic code
with a CFD code.

The logic required in coupling a CFD code to a structural dynamic code was established
in stages of increasing complexity. All models described in this report are axisymmetric models.
The first stage involves coupling a system of rigid disks connected by springs with the
surrounding flow field. For example, a "payload” disk of small diameter and large mass was
connected to a "decelerator" disk of large diameter and small mass by a linear spring. The
equations for the coupled system were solved in time until a terminal velocity was reached. The
relative motion of the disks damped out due to the coupled structural and aerodynamic effects.
The second stage was to couple the dynamic spherical membrane model to the CFD model. For
example, a hemispherical membrane was pinned along the skirt. The motion of the skirt was
prescribed to start from rest and smoothly reach a steady "terminal” value. Ultimately, the
aerodynamics about the membrane approached steady behavior. The dynamics of the spherical
membrane naturally damped and the membrane approached a final nonspherical shape.

The present model involves coupling the CFD code to the MSD structural dynamic code
representing a flat, circular solid-cloth parachute such as a C-9. This model was used in an
attempt to predict the behavior of a quarter-scale C-9 canopy dropped from rest. The
computational results will be compared with experimental results obtained by Dr. Calvin Lee of
Natick [{6]. This paper describes the coupled model and presents the computational results for
the quarter-scale C-9. Future enhancements to the individual and coupled models are considered.

CURRENT MODEL
Coupling

The coupling approach used in the model is an explicit marching method in time. The
CFD code is used as the main Fortran program, which calls the structural code subroutines. The
coupled model starts the computations with the flow medium and structural components at rest.
The CFD solver computes the pressure distribution for the flow field, which is zero everywhere
for the first time step for these initial conditions. The pressure distribution over the surface of
the structural model and the time step are sent to the structural code. The structural code
integrates the equations of motion over this time step at a user-defined set of mass points. Each
mass point coincides with a specific adjacent CFD vertex. The positions and velocities of the
mass points are returned to and updated in the CFD code. These surface vertices in the CFD
code are required to move with the motion specified by the structural code. The boundary
condition imposed by the CFD code on these vertices represents a no-slip boundary condition.
The CFD code computes the pressure distribution for the next time step and sends the surface
differential pressure values and the time step to the structural code. The process continues by
marching forward in time up to a specified completion time.
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Computational Fluid Dynamics (CFD) Model

The SALE code is being employed as the flow solver in the current model [7]. SALE
uses a finite difference algorithm to solve tue time-dependent axisymmetric Navier-Stokes
equation and conservation equations for mass and internal energy. The fluid pressure is
determined from an equation of state. It should be noted that velocities are defined at the
vertices of the computational grid, whereas pressures are defined at cell centers. The finite
difference algorithm of SALE allows the use of nonuniform computational grids, made up of
quadrilateral cells. This allows the grid to be deformed to model the curved surfaces of the
decelerator.

SALE has the option of solving the Navier-Stokes equations for two-dimensional planar
or axisymmetric coordinates. It utilizes the arbitrary Lagrangian-Eulerian (ALE) grid rezoning
method, which allows the grid to be adjusted with time. This rezoning method is vital for
snlving flows about decelerators in motion or for inflation problems.

SALE uses a single block grid consisting of a network of quadrilateral cells. The mesh
of cells is n, cells wide and n, cells high. For the current model, the decelerator surface is
defined in the CFD grid by a set of adjacent, interior grid points. The computational grid
consists of an interior "rezone" region which includes the decelerator grid points and an exterior
region which is rectilinear and has a less dense grid structure than the "rezone" region. (See
Figure 1.)

Decelerator Surf

/

interior "Rezone”
Region

Figure 1. Computational Grid Structure

An initial grid is created by implicitly generating the interior "rezone" region and then
extending the exterior region algebraicly from the outer boundary of the "rezone” region.




The interior "rezone” region is generated by deforming an initially uniform, rectangular grid so
that appropriate cell vertices fit the desired decelerator shape. This gridding approach is
demonstrated in Figure 2 where C is the grid vertex representing the skirt of the canopy and A
represents the canopy apex.
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Figure 2. Interior "Rezone" Region
of Computational Grid

The current model requires that the computational grid be modified each time step in
order to fit the time-varian' canopy shapc. The interior "rezone" region of the grid is updated
each time step with the same procedure that was used to create the initial grid. The exterior
region is then updated to extend from the new distribution of grid points along the outer
boundary of the "rezone" region. Once all grid points have been repositioned, the relative motion
grid and the corresponding fluid is determined at each grid vertex.

The MSD model requires nodal pressure differences as input at all vertices on the canopy
surface. Since SALE computes pressure values at cell centers, vertex pressures are defined as
the average of the surrounding four cell pressures. Values for the surface pressures are then
extrapolated from the two neighboring vertices. This process is done for both the inner and outer
surface of the canopy. This is shown in Figure 3 where subscripts P1 and P2 are vertex
pressures and P3 is the extrapolated nodal pressure on the upper surface of the canopy.

Point B is on the canopy surface at a corner in the CFD grid and often produces an
adjacent cell which is quite distorted (see Figure 2). The result is a pressure distribution with
a slight discontinuity at point B. For this reason, the differential pressure value sent to the MSD
model at point B is evaluated by interpolation from a curve fitting the differential pressures at
the surrounding vertices.




Pi=(Pa+Pb+Pc+Pd)i4

P2=(Pc+Pd+Pe+Pf)4

P3=2xP2-P1

Upper Surface

Lower Surface

Figure 3. Surface Pressure Extrapolation

Mass Spring Damper (MSD) Model

The canopy is modeled as a series of lumped mass points connected by springs and
dampers as shown in Figure 4. The MSD model fits into the overall coupled code as a set of
Fortran subroutines. The MSD :subroutines require a pressure distribution along the meridional
length of the canopy and a time step as input. The program returns the position and velocity of
each mass point at the requested time. The MSD maodel is being developed as a separate set of
subroutines so that other parachute models could be used irn its place or, so that it could be
coupled with CFD codes other than SALE.

The MSD model is axisymmetric. It models flat circular solid cloth canopies such as a
C-9. Newton’s second law is applied at a user-defined number of mass points to obtain a set of
coupled nonlinear differential equations. A free body diagram of a typical interior mass point
is shown in Figure 5. The forces F1, F2, F3, F4, and F5 applied to mass powt i are described
below.
e F1 is the force predominantly due tc the aerodynamic differential pressure acting across the
canopy surface. It is the product of the current pressure difference over the canopy surface at
mass point ¢ and the current surface area associated with mass point i. (Note: A small amount
of artificial normal damping is added in the normal direction to maintain numerical stability.)
 F2 is the sum of the forces from the meridional spring and damper connecting mass points i
and i+1. The spring force is the product of the spring constant and the change in lengtt for mass
points i and i+1. The spring force only acts when the distance between the mass points is greater
than the constructed distance. The damping force opposes the relative velocity between mass
points ¢ and i+]1. The force is the product of the damping constant and the relative change in
velocity for mass points ¢ and i+1. These dampers are required to damp out the high natural




Meridiona! Arc of Canopy
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Figure 4. Mass Spring Damper Model
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Figure 5. Free Body Diagram

frequencies in the meridional springs. These natural frequencies cause flow instabilities in
connection with the "no-slip" boundary conditions at the canopy surface.

« F3 is the sum of the forces from the meridional spring and damper connecting mass points i
and i-1. Similar to F2.

« F4 is the force from the "hoop" spring contribution. The "hoop" springs only engage when
the current distance between the y axis of symmetry and the mass point i is greater than the
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constructed meridional distance from the apex of the canopy to mass point i. The force is the
product of the "hoop" spring constant and the positive quantity of deformation described above.
» F5 is the force due to gravity on mass point i. This force is the product of the gravitational
acceleration constant and the mass of mass point /.

The angles shown in Figure 5 are described below.

e a, is the angle from the y axis to the outward normal direction associated with mass point i.
The outward normal direction is calculated from the inverse of the first derivative of a third order
Lagrange polynomial which passes through mass points i-1, 1, and i+1.

* B, is the angle from the local x axis of mass point i to the line segment connectmg mass points
iand i+l.

Applying Newton’s second law to a typical interior mass point in the x and y directions
results in the equations of motion shown in equations (1) and (2) below.

d?x,
1—d'ET"PISlna +HkmAl cosB -
(1)
kh Ar,-km, Al, ,cosB, +
d d(al, )
Cm ,_(..a__cosBl—Cmi_l_a.t.:f.‘_.cosBI_1
a?
mi.__zi-Picosai kmAl sinf +
dt?
2
km, AL, sinp, -cm, 2310 ing . (<)

My

d(Al, )

Cm,_ 1—-7?-—31“61 g

These equations are reformulated into a set of first order ordinary differential equations
(ODE’s) that are nonlinear in space and first order in time. The equations are solved over the
desired time step with initial conditions by utilizing the SLATEC ODE solver GDEBDF and
associated subroutines [8]. The subroutine DDEBDF uses backwards differentiation formulas of
orders one through five to integrate a system of first order ordinary differential equations.

Two half-gores and a radial are used to model the canopy as shown in Figure 6. The
number of mass points used (a total of n) and the unstretched position of each mass point is user
defined. The mass associated with each canopy mass point is based on the undeformed geometry
of the canopy. The undeformed surface area for a mass point is multiplied by the undeformed

7




m(1) =mass of

S()=surface

node point 1
:’hg"d:; including
cection canopy and
m(2) radal in S{1)
¢ = 360 degrees
Two halfsgores divided by the total
connected by a radial number of gores
L
S(n-)=surface
area of shaded
section m(n-1)
m(n)
Suspension Line ,
connects to Payload i

s

Fiqure 6. Layout for Two Half-Gores

thickness of the canopy fabric and the density of the canopy fabric. This quantity is added to
the mass associated with the radial contribution to that mass point.

The meridional springs are modeled by assuming a linear force versus deflection curve
for both the fabric and the radial. The material associated with a meridional spring is considered
as a rectangular section as shown in Figure 7. The fabric spring and radial spring are considered
to act in parallel. This approximation allows for the introduction of a Ycung’s modulus term for

LOAD VS DEFLECTION CURVE

Two half-gore sections Misq
connected by a radial Model of two half gore
sections connected by a

radial

Figure 7. Meridional Spring Constants




both the canopy fabric and the radial. The equation to determine a meridional spring constant
is shown in equation (3).

_mEh(x0,+x0,,,) N EA

km
! Io,N Io,

(3)

The apex and skirt mass points on the canopy require special treatment due to different
surface area calculations. The suspension line is modeled as a weightless spring connecting the
skirt canopy mass point to the payload. The payload mass for the model is defined as the total
payload mass divided by the number of gores in the model. The payload equation of motion is
restricted to the y direction. Therefore, the total number of first order ODE’s that are solved over
each time step in the MSD model is equal to four times the total number of canopy mass points
plus two.

The MSD model has many assumptions and is not expected to model a flat circular solid
cloth canopy completely. However, the model is capable of modeling large deformations that
are similar to those experienced by parachutes. The model is expected to yield a more accurate
representation of a parachute with a variety of improvements that are discussed in a later section
of this report.

PRELIMINARY RESULTS

The coupled computer model is being tested by modeling a quarter-scale C-9 solid-cloth
canopy, which is dropped from rest. This choice was made because of the relatively simple set
of initial conditions required and because the quarter-scale C-9 is currently being tested by Dr.
Calvin Lee of Natick. The quarter-scale C-9 canopy is represented with 29 mass points along
its canopy surface with a small degree of clustering towards the canopy apex. The total CFD
grid is made up of 59 cells in the x direction and 104 cells in the y direction. The interior
"rezone" region incorporated in the CFD grid has 44 cells in the x direction and 54 cells in the
y direction (axis of symmetry). The canopy has a prescribed initial configuration, which provides
a positive volume for all CFD cells.

The fluid and structural properties used in the computation are defined below. The fluid
medium is air with standard atmospheric properties at sea level. The quarter-scale C-9 solid-cloth
canopy has a constructed diameter of 7 feet and is made from 28 gores. The line length is 5.74
(feet) and the payload weight is 5.3 (pounds). The Young’s modulus for the fabric and lines is
taken as 30,000 (psf). The fabric thickness is 0.0004 (feet) and the line radius is 0.01 (feet). The
gravitational constant is 32.2 (feet/second?).

The initial shape of the canopy is unstretched. The shape is determined by defining the

angle between the y axis and the suspension lines. The canopy skirt is required to remain tangent
to the suspension lines for this initial configuration. The top of the canopy is required to trace

9




out a circular section so that the required total line length and canopy constructed diameter are
consistent with a quarter-scale C-9 parachute. The initial payload position is defined as the origin
of the y axis of symmetry.

The computation was run on a Kubota Titan 3000 mini-supercomputer. The entire
computation took approximately 30 hours. The initial time step for the coupled computation was
1.0x10 seconds, which was permitted to grow to a maximum time value of 1.0x10* seconds.
The computation ran to a completion time of four seconds.

The figures in Appendix A show the canopy shape at a sequence of times throughout the
opening process. The initial configuration for the 29 canopy mass points and for the payload
mass point is shown in Figure A-1. Figure A-1 also shows a sequence of canopy shapes for
equally spaced time steps from the initial shape at time equal to zero seconds up to time equal
to 0.6 seconds. Figures A-2 and A-3 are a continuation of Figure A-1 for times from 0.6 to 1.2
seconds and 1.2 to 1.8 seconds, respectively.

The predicted payload position and velocity curves as functions of time are shown in
Figure 8. The predicted payload force versus time curve is shown in Figure 9. This force is
calculated by taking the force in the suspension line spring that connects the payload mass point
to the skirt mass point and multiplying its vertical component by the total number of gores. Even
with the assumed initial shape and other approximations used in the model, this curve appears
to be reasonable when compared to experimental data of Dr. Lee [6].

PAYLOAD POSITION & VELOCITY VERSUS TIME
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Figure 8. Payload Position and Velocity Versus Time
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Figure 9. Payload Force Versus Time

A sequence of pressure and velocity fields for the interior "rezone" region of the CFD grid
are shown in the figures in Appendix B. These plots are "snapshots" in time from 0.2 seconds
to 2.4 seconds at 0.2 second increments. The pressure contour lines are shown on the left hand
side of the figure. The canopy shape is highlighted by the pressure contour lines because of the
discontinuity of the pressure field across the canopy surface. There are 41 contour lines. These
contour lines range from a minimum value of -0.2 (psf) to a maximum value of 0.2 (psf) in 40
equal increments of 0.01 (psf) each. The right hand side of these figures show the velocity
vectors. The velocity vectors are scaled equally for each snapshot to provide information on the
time-dependent velocity field in a consistent manner.

A steady state solution is approached after the computation is run out to a real time of
four seconds. The following values correspond to the final values at four seconds. The ratio of
the projected diameter to the constructed diameter is 0.69. The ratio of the projected height to
the projected diameter is 0.36. The terminal velocity is -12.0 feet per second. As expected, the
vertical force transferred through the suspension lines to the payload is equal to the prescribed
payload weight of 5.3 pounds.

11




FUTURE MODEL
Coupling

The current model is in its preliminary stage and there is significant room for
improvement. The effects of various parameters have not yet been fully investigated. The
explicit marching method should approach the exact solution to the coupled equations for a
sufficiently small time step. However, an implicit method, which would require iterating between
the structural and CFD codes, may be advantageous in the future. Another future requirement
is the ability to model a larger variety of initial conditions.

CFD Model

One of the primary limitations of the current CFD model is its inability to represent
canopy geometries early in the inflation phase. With the current model, such geometries result
in highly distorted CFD grids. The accuracy of the CFD pressure field is adversely affected by
such grids. In order to deal with canopy geometries early in the inflation process an alternate
CFD gridding approach will need to be implemented. One option is to utilize a multigrid CFD
method, which will allow grid points to be distributed about the canopy surface in a less distorted
manner. One difficulty with the current CFD model is the extrapolation of pressure values to
the canopy surface. This difficulty could be addressed with the implementation of a gridding
method which results in orthogonality at the canopy surface. Such a gridding approach would
result in a more accurate surface pressure distribution.

Another limitation of the current model is its exclusion of effective porosity. Previous
research conducted by Dr. Earl Steeves at Natick addressed the effects of porosity on rigid
decelerator problems. Porosity effects must be included in future models.

Mass Spring Damper (MSD) Model

The MSD model has room for substantial improvements. This section will discuss
modifications that are presently being implemented and potential future modifications. The
suspension line mass must be included in the model. This involves adding a user-defined number
of mass points along the suspension line. These mass points will not coincide with vertices in
the CFD model. The suspension line mass points will be connected by springs and dampers.
The drag forces on the suspension lines will be included. The drag force on each line mass point
is calculated using the current velocity vector of the mass point and the relative fluid velocity at
the line mass point. The axisymmetric model can not include the flow disturbance caused by the
suspension lines. Another necessary improvement to the MSD model involves the accuracy of
the hoop force. The hoop contribution to mass point loadings may be best incorporated into the
model by applying the appropriate logic used in the CALA code [9]. The model should include
canopy contact effects, a Poisson’s ratio effect for the canopy fabric, and the nonlinear material
properties of the fabrics and lines that are used in parachute construction.
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The force due to the pressure difference across the canopy surface needs to be of a higher
order of accuracy. The pressure should be assumed as a piecewise linear function and integrated
between mass points along the canopy length to obtain a more accurate force contribution at each
mass point. Various reefing condition options will be included in the model. For example, skirt
reefing will be modeled by restricting the x deflection of the skirt mass point either for a
specified quantity of time or until a specified payload velocity has been obtained. Another major
addition will be to include other canopy geometries such as conical, flat extended skirt, and
annular canopies. The ribbon canopy presents a larger challenge and may need to be modeled
as a solid canopy with an appropriate quantity of porosity. The number of mass points required
to model each ribbon individually would result in an excessive number.

Eventually a higher-order three-dimensional model, most likely of a finite element type,
must be developed in connection with a three-dimensional CFD code.

CONCLUSIONS

The complexity of modeling the opening process stems from the coupling between the
structural dynamics of the canopy, lines plus payload and the aerodynamics of the surrounding
fluid medium. This paper has described ongoing research at Natick which involves the coupling
of a CFD code and a structural dynamics code. The solution to the ¢ upled problem is expected
to assist in the development of future U.S. Army airdrop systems, v hich include the capability
of deploying at low altitudes and high speeds. Initial computational results with the current
model described in this paper compare favorably with experimental data for a quarter-scale C-9.
Future computational models are expected to provide significant insight about the behavior of
parachutes during the opening process.
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APPENDIX A.

Canopy Shape Versus Time
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APPENDIX A
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Figure A-1. Canopy Shape Versus Time in Seconds (0.0<t<0.6)
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Figure A-2. Canopy Shape Versus Time in Seconds (0.6<t<1.2)
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Figure A-3. Canopy Shape Versus Time in Seconds (1.2<t<1.8)
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APPENDIX B.

CFD Flow Field Versus Time
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APPENDIX B
(Pressure Contours and Velocity Field)

Figure B-2. CFD Solution (1=0.4 seconds)
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Figure B-6. CFD Solution (t=1.2 seconds)

22

*




R e e e e e e o
/

————— | M e s e e e s
-~ — ~ -

Figure B-7. CFD Solution (t=1.4 seconds)

////////

N
<

Figure B-8. CFD Solution (t=1.6
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